If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-49=0
a = 36; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·36·(-49)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84}{2*36}=\frac{-84}{72} =-1+1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84}{2*36}=\frac{84}{72} =1+1/6 $
| (6v3)=63 | | (6v3)=39 | | (5v1)=04 | | x^2-3x+6=4-10x | | (3v4)=21 | | 90x+3+12x-4=24x+8 | | 11x+10=-56 | | 3w+6w+2w=11w | | 58x+52=78x−78 | | 5n+7=7n+7=2n+1 | | 10x+10=-80 | | 16v^2+40v=-25 | | 6h+86=128 | | 17x-18=5x | | 3d+26.00=249.50 | | 1-x÷6=x÷3+1÷2 | | 34-x=198 | | 24c+2.75=44.03 | | 65=-y+272 | | -6u=-12/7 | | -3w/5=-21 | | 5p+7=9-p | | -4-7x=20 | | 4/3u=-12 | | 4x¨3+21x^2+14x=0 | | 5-b=17-2b | | 9x+2=10x+4 | | 2x-3=8x+11 | | 2x2+6=-34 | | 3/4a=2(1/2a+1) | | 3/20=x/60 | | 3x2+39=0 |