If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-9x=0
a = 36; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·36·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*36}=\frac{0}{72} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*36}=\frac{18}{72} =1/4 $
| -4x3=32 | | 4j+10=-9-j-1 | | (x–16)=–6 | | 12x2/3=831/3 | | -8t-10=4-6t | | x/10+1.2=12.8 | | v-10=49 | | -9r+6=-3r | | 2(4x-12)=3x-4 | | g/4+3=23 | | 4z+3=-13 | | 6x+4(6x-14)=154 | | r-4=13-2r | | -8-1=5x+23 | | 5x=2O | | 0=-p+-4 | | z-9=10-3+3z | | -75=-6v | | (x–2)=15 | | 6t-9=12+3 | | 15.69=270/x | | 32+x=110 | | 6j+9=-1+7j | | 16-8(x+3)=-10(x+2)+13 | | 2x=-1+5 | | 2x-2=x+19 | | u^2+0u-49=0 | | 3(3x+5)=2(4.5x+7.5) | | (31.38/2)=270/x | | -10+3r=6r-1 | | 42+x=48 | | -80=-2(5k-2)-4(k-7) |