If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 37(4 + -1x)(5 + 3x) = 0 Multiply (4 + -1x) * (5 + 3x) 37(4(5 + 3x) + -1x * (5 + 3x)) = 0 37((5 * 4 + 3x * 4) + -1x * (5 + 3x)) = 0 37((20 + 12x) + -1x * (5 + 3x)) = 0 37(20 + 12x + (5 * -1x + 3x * -1x)) = 0 37(20 + 12x + (-5x + -3x2)) = 0 Combine like terms: 12x + -5x = 7x 37(20 + 7x + -3x2) = 0 (20 * 37 + 7x * 37 + -3x2 * 37) = 0 (740 + 259x + -111x2) = 0 Solving 740 + 259x + -111x2 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '37'. 37(20 + 7x + -3x2) = 0 Factor a trinomial. 37((4 + -1x)(5 + 3x)) = 0 Ignore the factor 37.Subproblem 1
Set the factor '(4 + -1x)' equal to zero and attempt to solve: Simplifying 4 + -1x = 0 Solving 4 + -1x = 0 Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + -1x = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -1x = 0 + -4 -1x = 0 + -4 Combine like terms: 0 + -4 = -4 -1x = -4 Divide each side by '-1'. x = 4 Simplifying x = 4Subproblem 2
Set the factor '(5 + 3x)' equal to zero and attempt to solve: Simplifying 5 + 3x = 0 Solving 5 + 3x = 0 Move all terms containing x to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + 3x = 0 + -5 Combine like terms: 5 + -5 = 0 0 + 3x = 0 + -5 3x = 0 + -5 Combine like terms: 0 + -5 = -5 3x = -5 Divide each side by '3'. x = -1.666666667 Simplifying x = -1.666666667Solution
x = {4, -1.666666667}
| 5(x+5)+10=8x-3(x-4) | | 4(5x+4)+34=14x-4 | | 1+3x-2x=7 | | 2n+7n= | | 5x-(9-2x)*6=5*(5x+12)-4x | | 5x^2+12x-6=0 | | n-8=-26 | | -8+1.2= | | 7385-67x=0 | | 3(10y-12)+15y=54 | | 340=17v | | 2b+4(b-6)=12 | | 7t+(-3t)-8=16 | | 7+6x-7x=6 | | 7y+59=y+11 | | -8=m-15 | | 2w-3=5 | | 8m-10m= | | 5*6-6-25+8*2= | | 17=3-8x | | 13x-3(2x-4)-17+5x=8x-12 | | 6d+7d-5d= | | 25-11x=-6x | | -3=k-11 | | 2x-x+3-4x+9=39 | | d-28=48 | | 2y+4(y-5)=4 | | 3n-5=-8+6+5n | | F(x)=-5x^2-15x | | X^2=q | | 8-4(m-2)=3+9(3m-2) | | 5+2(4x-6)=7-5(2x+1) |