37-(2c+3)=4(c+5)c

Simple and best practice solution for 37-(2c+3)=4(c+5)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 37-(2c+3)=4(c+5)c equation:



37-(2c+3)=4(c+5)c
We move all terms to the left:
37-(2c+3)-(4(c+5)c)=0
We get rid of parentheses
-2c-(4(c+5)c)-3+37=0
We calculate terms in parentheses: -(4(c+5)c), so:
4(c+5)c
We multiply parentheses
4c^2+20c
Back to the equation:
-(4c^2+20c)
We add all the numbers together, and all the variables
-2c-(4c^2+20c)+34=0
We get rid of parentheses
-4c^2-2c-20c+34=0
We add all the numbers together, and all the variables
-4c^2-22c+34=0
a = -4; b = -22; c = +34;
Δ = b2-4ac
Δ = -222-4·(-4)·34
Δ = 1028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1028}=\sqrt{4*257}=\sqrt{4}*\sqrt{257}=2\sqrt{257}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{257}}{2*-4}=\frac{22-2\sqrt{257}}{-8} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{257}}{2*-4}=\frac{22+2\sqrt{257}}{-8} $

See similar equations:

| 4x+2=3x-7=114 | | 6•3x=-7 | | -6/1=x-5/1 | | 5x-3x=11+9 | | 9=k3 | | 37-(2c+3)=4(c | | 5x-3x=11-9 | | 2x-2.7=3.3-4x | | 6x3x=-7 | | 5x-3x=-11+9 | | -6=x-5/1 | | 5x+3x=11+9 | | 2x²+4x+5=0 | | 2+10/a=2 | | 7x+42=7(6+x) | | 8(3-(4+6x))-2x=-10+2(1-25x) | | h+13.2=10.4 | | 2^x+4^x+4^1=264 | | 1/9y+5=-18 | | m^2=1220 | | X=y-4/y+1 | | p-7/9=-2/9 | | Y=4x+2/3 | | 2^x+4^x+1=264 | | (4n-25)=180 | | x-4/1=-1.6 | | 3(9-6x)=0 | | 15000000=0.1x | | (24+2x/x)-1=(2x+3)/3 | | v+5/6=2/3 | | 7x+42=7(6+x | | 5x=4(90-x) |

Equations solver categories