If it's not what You are looking for type in the equation solver your own equation and let us solve it.
38+7k=8/k+4
We move all terms to the left:
38+7k-(8/k+4)=0
Domain of the equation: k+4)!=0We get rid of parentheses
k∈R
7k-8/k-4+38=0
We multiply all the terms by the denominator
7k*k-4*k+38*k-8=0
We add all the numbers together, and all the variables
34k+7k*k-8=0
Wy multiply elements
7k^2+34k-8=0
a = 7; b = 34; c = -8;
Δ = b2-4ac
Δ = 342-4·7·(-8)
Δ = 1380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1380}=\sqrt{4*345}=\sqrt{4}*\sqrt{345}=2\sqrt{345}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{345}}{2*7}=\frac{-34-2\sqrt{345}}{14} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{345}}{2*7}=\frac{-34+2\sqrt{345}}{14} $
| 8u+3u-(-19)u-18u=12 | | 4.2x-3=0.5x(8.4x+6) | | B+5=-12b-8 | | 2(a-6)/7=4 | | 4x-6=10x-48 | | 4/x-4-2/5x-20=0 | | 2(5z+15)=90 | | 14m^2-7m-38=8m^2 | | k^2-4=(-36) | | 6x+6x-9+6x•3=180 | | 15p+6=0 | | 6x+6x-9+6x3=180 | | (11/12s)+5/6)=(5/6s)+(19/12) | | 6x^2+7x-25=30 | | 2/x=x/7x-24 | | 3x-12+36=54 | | 912=61u+25 | | x^2+2x-2.6=0 | | 0.2x+0.5=(0.6+3) | | 15+5x-5=-5(3x+2) | | 17/2=x/5 | | 100=4x-20 | | 16d-12d-d=6 | | 5(-1+2v)=-7v-22 | | 17/2=n/5 | | -13d+6d+-12d+19d+18d=-18 | | 69+x=420 | | -2(x-7)=-3(-2x+6) | | 6x+7=-3x-11 | | (7k-1)^2=-8 | | 3+2p=3+5p | | 5x-7(x+3)+2x=-25 |