384=(20-4)(20-2x)(x)

Simple and best practice solution for 384=(20-4)(20-2x)(x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 384=(20-4)(20-2x)(x) equation:



384=(20-4)(20-2x)(x)
We move all terms to the left:
384-((20-4)(20-2x)(x))=0
We add all the numbers together, and all the variables
-(16(-2x+20)x)+384=0
We calculate terms in parentheses: -(16(-2x+20)x), so:
16(-2x+20)x
We multiply parentheses
-32x^2+320x
Back to the equation:
-(-32x^2+320x)
We get rid of parentheses
32x^2-320x+384=0
a = 32; b = -320; c = +384;
Δ = b2-4ac
Δ = -3202-4·32·384
Δ = 53248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{53248}=\sqrt{4096*13}=\sqrt{4096}*\sqrt{13}=64\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-64\sqrt{13}}{2*32}=\frac{320-64\sqrt{13}}{64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+64\sqrt{13}}{2*32}=\frac{320+64\sqrt{13}}{64} $

See similar equations:

| -3(14+5r)=-14(r+3) | | C=20h+500 | | 5x+16+60=176 | | -6+8y=5y+12 | | 3x+8+2x+1=x+17 | | -5x+35=75 | | 7(3-2s)+9s=6 | | 4(x−5)=−12 | | 5x-150=3x-130 | | 4(3x+5)+3(3x-4)=134 | | -18/1/4=2.5x | | 125m-75+42,750=45000-175m | | Y+5x=-25 | | 4x−(2+5x)=−8 | | 4(x-4=5(x+3) | | 12x−5=−12 | | 2d+1/6=661/3d+1 | | 0.75x+14.25=0.25x+9.75 | | 3(4-8a)-7=125 | | 17+3y=3y+9 | | 6p+6p=-22+10p | | -2(8+2k)-6k=2-7k | | 130+3x=150-5x | | 3=d-6 | | 6b+12P=168 | | 36^3+6r^2=144r | | 9(x+0.7)=9-1.8 | | -6+3y-10=2 | | 14=2xU | | x³=56 | | 23x+8=10 | | -4n=8n-3 |

Equations solver categories