38x+36=5(x+2)*7x+4

Simple and best practice solution for 38x+36=5(x+2)*7x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 38x+36=5(x+2)*7x+4 equation:


Simplifying
38x + 36 = 5(x + 2) * 7x + 4

Reorder the terms:
36 + 38x = 5(x + 2) * 7x + 4

Reorder the terms:
36 + 38x = 5(2 + x) * 7x + 4

Reorder the terms for easier multiplication:
36 + 38x = 5 * 7x(2 + x) + 4

Multiply 5 * 7
36 + 38x = 35x(2 + x) + 4
36 + 38x = (2 * 35x + x * 35x) + 4
36 + 38x = (70x + 35x2) + 4

Reorder the terms:
36 + 38x = 4 + 70x + 35x2

Solving
36 + 38x = 4 + 70x + 35x2

Solving for variable 'x'.

Reorder the terms:
36 + -4 + 38x + -70x + -35x2 = 4 + 70x + 35x2 + -4 + -70x + -35x2

Combine like terms: 36 + -4 = 32
32 + 38x + -70x + -35x2 = 4 + 70x + 35x2 + -4 + -70x + -35x2

Combine like terms: 38x + -70x = -32x
32 + -32x + -35x2 = 4 + 70x + 35x2 + -4 + -70x + -35x2

Reorder the terms:
32 + -32x + -35x2 = 4 + -4 + 70x + -70x + 35x2 + -35x2

Combine like terms: 4 + -4 = 0
32 + -32x + -35x2 = 0 + 70x + -70x + 35x2 + -35x2
32 + -32x + -35x2 = 70x + -70x + 35x2 + -35x2

Combine like terms: 70x + -70x = 0
32 + -32x + -35x2 = 0 + 35x2 + -35x2
32 + -32x + -35x2 = 35x2 + -35x2

Combine like terms: 35x2 + -35x2 = 0
32 + -32x + -35x2 = 0

Begin completing the square.  Divide all terms by
-35 the coefficient of the squared term: 

Divide each side by '-35'.
-0.9142857143 + 0.9142857143x + x2 = 0

Move the constant term to the right:

Add '0.9142857143' to each side of the equation.
-0.9142857143 + 0.9142857143x + 0.9142857143 + x2 = 0 + 0.9142857143

Reorder the terms:
-0.9142857143 + 0.9142857143 + 0.9142857143x + x2 = 0 + 0.9142857143

Combine like terms: -0.9142857143 + 0.9142857143 = 0.0000000000
0.0000000000 + 0.9142857143x + x2 = 0 + 0.9142857143
0.9142857143x + x2 = 0 + 0.9142857143

Combine like terms: 0 + 0.9142857143 = 0.9142857143
0.9142857143x + x2 = 0.9142857143

The x term is 0.9142857143x.  Take half its coefficient (0.4571428572).
Square it (0.2089795919) and add it to both sides.

Add '0.2089795919' to each side of the equation.
0.9142857143x + 0.2089795919 + x2 = 0.9142857143 + 0.2089795919

Reorder the terms:
0.2089795919 + 0.9142857143x + x2 = 0.9142857143 + 0.2089795919

Combine like terms: 0.9142857143 + 0.2089795919 = 1.1232653062
0.2089795919 + 0.9142857143x + x2 = 1.1232653062

Factor a perfect square on the left side:
(x + 0.4571428572)(x + 0.4571428572) = 1.1232653062

Calculate the square root of the right side: 1.059842114

Break this problem into two subproblems by setting 
(x + 0.4571428572) equal to 1.059842114 and -1.059842114.

Subproblem 1

x + 0.4571428572 = 1.059842114 Simplifying x + 0.4571428572 = 1.059842114 Reorder the terms: 0.4571428572 + x = 1.059842114 Solving 0.4571428572 + x = 1.059842114 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4571428572' to each side of the equation. 0.4571428572 + -0.4571428572 + x = 1.059842114 + -0.4571428572 Combine like terms: 0.4571428572 + -0.4571428572 = 0.0000000000 0.0000000000 + x = 1.059842114 + -0.4571428572 x = 1.059842114 + -0.4571428572 Combine like terms: 1.059842114 + -0.4571428572 = 0.6026992568 x = 0.6026992568 Simplifying x = 0.6026992568

Subproblem 2

x + 0.4571428572 = -1.059842114 Simplifying x + 0.4571428572 = -1.059842114 Reorder the terms: 0.4571428572 + x = -1.059842114 Solving 0.4571428572 + x = -1.059842114 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4571428572' to each side of the equation. 0.4571428572 + -0.4571428572 + x = -1.059842114 + -0.4571428572 Combine like terms: 0.4571428572 + -0.4571428572 = 0.0000000000 0.0000000000 + x = -1.059842114 + -0.4571428572 x = -1.059842114 + -0.4571428572 Combine like terms: -1.059842114 + -0.4571428572 = -1.5169849712 x = -1.5169849712 Simplifying x = -1.5169849712

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.6026992568, -1.5169849712}

See similar equations:

| x^3+10x^2-8x-40=0 | | B-3*5=3B | | xa+b=c | | 4a+9a=36 | | x-5=11-3x | | x+y-3z=29 | | 3(13-n)=15 | | 4[4-x+4]=12 | | -3=14x | | 1.50x+2.00(6)=1.80(x+6) | | 2(y-6)-y=-12+1 | | 11.98=15+(-9.8)(x) | | 2y+17=3y-10 | | 6(x+4)=2(3x+4)+16 | | 9x^2+y^2=0 | | -4+P+2=0 | | 3y+4y+2y+5y+15+6= | | 2x+3x=98 | | C=42+d | | 1x+.30=210 | | f(x)=x^4-x^3-6x^2 | | 3(2c+1)-7=50 | | 2(x-6)=x | | 5n^3=20n | | 2x-3y=6fory | | 8x=-52 | | 2x+3=4x-3whatisX | | x+.30=210 | | 3(5x+6)=7x+74 | | 5p-8=13-4p | | 7(2x+3)=63 | | 55-4m=-6(m+2) |

Equations solver categories