If it's not what You are looking for type in the equation solver your own equation and let us solve it.
390=(2x+6)(2x+15)
We move all terms to the left:
390-((2x+6)(2x+15))=0
We multiply parentheses ..
-((+4x^2+30x+12x+90))+390=0
We calculate terms in parentheses: -((+4x^2+30x+12x+90)), so:We get rid of parentheses
(+4x^2+30x+12x+90)
We get rid of parentheses
4x^2+30x+12x+90
We add all the numbers together, and all the variables
4x^2+42x+90
Back to the equation:
-(4x^2+42x+90)
-4x^2-42x-90+390=0
We add all the numbers together, and all the variables
-4x^2-42x+300=0
a = -4; b = -42; c = +300;
Δ = b2-4ac
Δ = -422-4·(-4)·300
Δ = 6564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6564}=\sqrt{4*1641}=\sqrt{4}*\sqrt{1641}=2\sqrt{1641}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{1641}}{2*-4}=\frac{42-2\sqrt{1641}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{1641}}{2*-4}=\frac{42+2\sqrt{1641}}{-8} $
| X=3x3+8 | | 12n-7-3=11 | | 4y=(3-3y)+11 | | 0.17x+0.8(x-1)=0.01(3x-1) | | 2x2−x(−3x+3)+(−3x+3)2=2 | | 34.8/x=18.8 | | 45/x=15 | | 46-27=x | | 20-1/5d=3/10d+14 | | 8×x=63.2 | | 320000*0.14=p | | -22x+16=50 | | 6.25=2(3.14)*r | | 2x+4=2(3x-6) | | 5x(x+1)=-2x(x-2) | | 17g+-3g+3=17 | | 2p^2=9p+5 | | 20x/1000-20x=1 | | 18x/900-18x=1 | | 2(b+3)-4=8 | | 5q-4q+2=18 | | t²-14t+12=0 | | -12-16y=16-14y | | 5/7=2x/93 | | 4/5(r-10)=r+2 | | 1.2y=6.48 | | -d-6=-2d | | 3=1.1^(n) | | 2x^2-x(-3x+3)+(-3x+3)^2=2 | | 11+5(10-6x)=37-18x | | (11x+17)(2x-13)=0 | | X/x+5=11 |