If it's not what You are looking for type in the equation solver your own equation and let us solve it.
396=(13+2x)(17+2x)
We move all terms to the left:
396-((13+2x)(17+2x))=0
We add all the numbers together, and all the variables
-((2x+13)(2x+17))+396=0
We multiply parentheses ..
-((+4x^2+34x+26x+221))+396=0
We calculate terms in parentheses: -((+4x^2+34x+26x+221)), so:We get rid of parentheses
(+4x^2+34x+26x+221)
We get rid of parentheses
4x^2+34x+26x+221
We add all the numbers together, and all the variables
4x^2+60x+221
Back to the equation:
-(4x^2+60x+221)
-4x^2-60x-221+396=0
We add all the numbers together, and all the variables
-4x^2-60x+175=0
a = -4; b = -60; c = +175;
Δ = b2-4ac
Δ = -602-4·(-4)·175
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-80}{2*-4}=\frac{-20}{-8} =2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+80}{2*-4}=\frac{140}{-8} =-17+1/2 $
| 11x=-47 | | 54+36+x=180 | | 6u^2+24u-72=0 | | (6x)+(x-9)=180 | | 4(1.08)^x+13=13 | | y=10-10^-2y | | y=10-10^-y | | -5+5t=180 | | 15+6x=-45+8x | | 17a=41a=3 | | -15+6x=45+8x | | 47+19x=180 | | -5x^2+30x-165=0 | | 19x+57=180 | | 2x(32)×2x(24)=100 | | 37x+106=180 | | 24b+60=180 | | 133+47x=180 | | 1x(32)2x(24)=100 | | N+0.3n=65 | | 5y+2=8y-11 | | 18x^2+9x-35=- | | x÷6=2 | | k^2+6k-53=2 | | 10x‒4x‒15,600=12,000 | | 9x-15+7x+5=180 | | X+13+4x+32=180 | | X+5+3x+10=47 | | x/2=1/4 | | 3b^2+7b+-6=0 | | 68x+76x=100 | | n^2+2n-93=6 |