If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3=n2
We move all terms to the left:
3-(n2)=0
We add all the numbers together, and all the variables
-1n^2+3=0
a = -1; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-1)·3
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-1}=\frac{0-2\sqrt{3}}{-2} =-\frac{2\sqrt{3}}{-2} =-\frac{\sqrt{3}}{-1} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-1}=\frac{0+2\sqrt{3}}{-2} =\frac{2\sqrt{3}}{-2} =\frac{\sqrt{3}}{-1} $
| -24=7(w+4)+6w | | –9−5d=–6d | | 12-f+f=3 | | 45x+20=225 | | X^2-2x-1=14 | | 1/7b+4=14 | | 10-(p+3)+p=7 | | 10+x*10=30 | | 2k+5+k=8 | | 7x-1+8x+8+16x=180 | | -4(1-8n)=188 | | M/5+m=35 | | 3(x+2)=6-2x | | 7x-1=8x+8+16x | | 17=-1-2m+5m | | 0x+5=-7x+2 | | 2(3x+1)=5x+3 | | 4x+70=9x=5 | | -6(-1+5x)=-36 | | 7b+b=7 | | 11p+3=2p+7 | | 2(3x+1=5x+3 | | 4z+5=18, | | 4k-4K+k+2=15 | | 62x=8 | | 5h+4h-4h+h-1=11 | | 8+3x+7x=68 | | k+3k-4k+2k+2=18 | | x-1=2x=30 | | 19p-15p+4p+3=11 | | 72+7x=2x-103 | | 90+15x+15+6x=180 |