If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3=w2
We move all terms to the left:
3-(w2)=0
We add all the numbers together, and all the variables
-1w^2+3=0
a = -1; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-1)·3
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-1}=\frac{0-2\sqrt{3}}{-2} =-\frac{2\sqrt{3}}{-2} =-\frac{\sqrt{3}}{-1} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-1}=\frac{0+2\sqrt{3}}{-2} =\frac{2\sqrt{3}}{-2} =\frac{\sqrt{3}}{-1} $
| 6x-18+4x=62 | | 90+(6x-21)+(4x+31)=360 | | 4x+6x+5-8=12 | | 1/3x+6=x-1-1/3 | | 7+4.5y=−6y+7 | | x/2+12=18 | | 3(2x-1)-(x-2)=1 | | -x-5-4x=-6(x-2) | | -2(x+5)+4x=-2 | | 4x-x+22-10=15 | | 3/4s-31.50=18 | | 50=-3x=6=7x | | 2x+4/3=3 | | 3(x=1)+x=24 | | 14x-15=12x-8 | | 3y-2y+28=90 | | −5x−8=2x+13 | | 4.5a=18 | | 14/35=2/n | | 25+90+(x+5)=180 | | -5+ | | 5+7x-2=4x-4 | | 5x-7=4x+15 | | 8c+18=35 | | 12x=3x+-22 | | 5(4w+5)/3=2 | | 3x+2=0.8 | | 5x+9=12x+13 | | -p/7=3 | | 27x+2=2x+27 | | 2(x−5)=30 | | (4x+35)+(15x-21)=90 |