If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+25a+8=0
a = 3; b = 25; c = +8;
Δ = b2-4ac
Δ = 252-4·3·8
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-23}{2*3}=\frac{-48}{6} =-8 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+23}{2*3}=\frac{-2}{6} =-1/3 $
| -8q-7=-6q+7 | | 2a+74=6a-4 | | 6a-4=2a+74 | | 3a^2+25a+8=0 | | -9-5g=10-9-4g | | 8x-9=7x+12 | | 52=2(t+18) | | 2/5x+4=-3 | | x-31.41=76.50 | | 0=-3(p−7) | | 6v+12=9(v-2) | | 9n=10+10n | | -c=-15 | | k/9-(-54)=59 | | -4(w-7)=7w+39 | | x^2-22x-50=0 | | -7x+44=-3(x-4) | | -2s+5s+10=-s-10 | | -8a-2=70 | | -5n+11n=12 | | -16=2(u+2)-4u | | 6n^2+-8=-2 | | 3+4x-6x=-1-2x+4 | | 9z=10-z | | 7(v-6)+6v=36 | | -3+7=1-5k | | 8{4s+9}=424 | | -14=4(v-4)-2v | | 10-(2x+5)=9+3x-4 | | (x-15)=129 | | -t-9=-3t+7 | | 4-(-13)=n |