If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+42a+72=0
a = 3; b = 42; c = +72;
Δ = b2-4ac
Δ = 422-4·3·72
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-30}{2*3}=\frac{-72}{6} =-12 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+30}{2*3}=\frac{-12}{6} =-2 $
| 21x÷15=x-12 | | -5(p-2)=6p+43 | | 2x+4-6x=8 | | 7m-35=3m+5 | | 4p-3=13(p=1 | | 6x²-12x-6=0 | | X/2+3x+X/2+8x=80 | | .9(x)=844 | | 2x+4x+6x=190 | | 3x+9x+30=90 | | -8u=-4+44 | | 2(p+5)=15p-81 | | 12x+13=-36-5x | | 2(p+5)=15-81 | | ×-2x+14=-16 | | ×-2x+12=-12 | | |x+1|+|x+3|=2 | | -2(20z+1)+3=-10(4z-3)-29 | | 3c+1=2c+6 | | |4x-2|-3=3 | | X+6=4(x+3) | | 5(2x+5)+5(2x+2)+2=20x+37 | | 21x÷100-20x÷100=40 | | 1/6x2=1/2x+7/6x2 | | x+13+12x-4=3x+9 | | 4r/3+16=28 | | 2(12+x)=x+28 | | 2(12+x)=x+18 | | 3x+3+6x-57=180 | | 5x-6=96 | | 8(x+7)=-97 | | x/2+25=2x-8 |