If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+8a+4=0
a = 3; b = 8; c = +4;
Δ = b2-4ac
Δ = 82-4·3·4
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4}{2*3}=\frac{-12}{6} =-2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4}{2*3}=\frac{-4}{6} =-2/3 $
| −5(2x−15)=2(x−2)−17 | | 2(7-3x)=-x | | 3+6x=3(−x+9)−42 | | -14+2x=-4 | | 7u+3-2(-2u-3)=3(u-1) | | 3+1/2x+4=4x-21/2 | | 2x+60=x+100 | | -7y+9y=8y+10 | | 3x+4+2x-1=43 | | 7+3+6x-5=35 | | 10+4w=12 | | 4x+10x-5x=45 | | 3/10*20/36=x | | 9d+3d-d-7=4d | | 10x+2x+5=35 | | 3+1/2x+4=4x-5/2x | | 245+250x=4000 | | 6(3x+5)-2(X+4)=12 | | -x-2/3=1/2x+1/3 | | 3u-6+5(2u+4)=-2(u+2) | | 3(x+1-1=3x+2 | | 122x+5=993 | | 8r-3r+5r=10 | | 12x+5=98 | | 4000000x+400=50000000 | | 4+(35-5x)/9=-1 | | 4d-3d+6d-4=2d | | 85=3x+25 | | 6x+4x+18=28 | | −5(2x−9)=2(x−24)−3 | | 12(x−38)=20+7x | | a÷6+4=16 |