If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2=3600
We move all terms to the left:
3a^2-(3600)=0
a = 3; b = 0; c = -3600;
Δ = b2-4ac
Δ = 02-4·3·(-3600)
Δ = 43200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43200}=\sqrt{14400*3}=\sqrt{14400}*\sqrt{3}=120\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120\sqrt{3}}{2*3}=\frac{0-120\sqrt{3}}{6} =-\frac{120\sqrt{3}}{6} =-20\sqrt{3} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120\sqrt{3}}{2*3}=\frac{0+120\sqrt{3}}{6} =\frac{120\sqrt{3}}{6} =20\sqrt{3} $
| 3x-12(x=4)+6-12 | | (x^2+78x)^(1/5)=3 | | y/4+14=5 | | m/10=40 | | 2t2=121/196 | | (5x-70)=(3x+10) | | 13/9=9-(-4)/6-x | | 1/4(x+2)=-1+1/2x | | 7p2–7p=7p | | 5c-17=58 | | V=32.6+1.8x | | 2x=372 | | 3.5x=25+3x | | (2-9x)1/2=2 | | x^2+70=17x* | | 2x-45=905 | | 7m=5m+8 | | 3x-45=905 | | 45x=905 | | 3.2x=5*2 | | x/55=1.5714 | | (125/140)=(75)^2/x^2 | | 11/7=55/x | | 2x-64=436 | | 66=-3(3n-5)-3 | | −9t+18=4t−60 | | 21-2n=14 | | x1+x2=1 | | 5(3x-1)-8(2x+3)=10 | | 6x+3+4x+3=180 | | –20j+6j+18j–9j+17=–3 | | 22+7p=32 |