3b2=316+22

Simple and best practice solution for 3b2=316+22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3b2=316+22 equation:



3b^2=316+22
We move all terms to the left:
3b^2-(316+22)=0
We add all the numbers together, and all the variables
3b^2-338=0
a = 3; b = 0; c = -338;
Δ = b2-4ac
Δ = 02-4·3·(-338)
Δ = 4056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4056}=\sqrt{676*6}=\sqrt{676}*\sqrt{6}=26\sqrt{6}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-26\sqrt{6}}{2*3}=\frac{0-26\sqrt{6}}{6} =-\frac{26\sqrt{6}}{6} =-\frac{13\sqrt{6}}{3} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+26\sqrt{6}}{2*3}=\frac{0+26\sqrt{6}}{6} =\frac{26\sqrt{6}}{6} =\frac{13\sqrt{6}}{3} $

See similar equations:

| 4b^2-46b+126=0 | | z^2−2z+(-1)^0.5=0 | | 6u=8+7u | | -4+2v-7=6v+9 | | (x+4)x8=72 | | 2x-31=2x-312x−31=2x−31 | | y/3=15/5 | | (x+4)·8=72 | | -4+2v-7=6v | | 2x+x=1138 | | 0.1*x+15=-0.08*x-50 | | 6x+5=10x+4 | | x*0.85=10 | | 52+8y+16=0 | | -(10-2y)+y=-16 | | r+3r=14+2 | | 30-4d=2 | | 2x^2-7x=7x-8 | | 8x-4+19=3x+12+5x | | n²-7n+12=0 | | x²+4x+9=21 | | (6x-6)=(3x+15) | | 3.4a+8.7a=38.7 | | w=2w=111 | | –2x=–16 | | Y-Y1=2(x-x1) | | 1.3=(-2.5)/x | | x–7=–11 | | 12.22+4y-14=0 | | x2+57-7=0 | | 4*x^2+2*x-151=0 | | 3y^2-2y-40=0 |

Equations solver categories