3c+2(2c)+4(1/4-100)+1(1/4c)=7850

Simple and best practice solution for 3c+2(2c)+4(1/4-100)+1(1/4c)=7850 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3c+2(2c)+4(1/4-100)+1(1/4c)=7850 equation:



3c+2(2c)+4(1/4-100)+1(1/4c)=7850
We move all terms to the left:
3c+2(2c)+4(1/4-100)+1(1/4c)-(7850)=0
Domain of the equation: 4c)!=0
c!=0/1
c!=0
c∈R
determiningTheFunctionDomain 3c+22c+1(1/4c)-7850+4(1/4-100)=0
We add all the numbers together, and all the variables
3c+22c+1(+1/4c)-7850+4(1/4-100)=0
We add all the numbers together, and all the variables
25c+1(+1/4c)-7849=0
We multiply all the terms by the denominator
25c*4c)+1(-7849*4c)+1=0
Wy multiply elements
100c^2-31396c=0
a = 100; b = -31396; c = 0;
Δ = b2-4ac
Δ = -313962-4·100·0
Δ = 985708816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{985708816}=31396$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31396)-31396}{2*100}=\frac{0}{200} =0 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31396)+31396}{2*100}=\frac{62792}{200} =313+24/25 $

See similar equations:

| -5-3(8m-7)=-152 | | 5x+1=4(x-3) | | V=6•3•x | | 17x-4=13x-24 | | -6(6x-3)+5=-36x+23 | | 14x-3=4x+67 | | 24t-0.3=23.4t | | 3x-46/5=7 | | X²+4x=117 | | 8x-(2x-14)=56 | | 2/3(1+4/7)=-1/2n | | 12x+9=-3x-13 | | 4z+9-z=4+2z+2 | | 3/5a-11=-75 | | 23.4t-0.3=24t | | 4g+3g(-7+5g)=1-g | | |4q+9=(-2q-1| | | 625^x+2=5^2x+10 | | ¥4q+9=(-2q-1| | | ¾=15/d | | -2x+10=25 | | 10-2x=19x+2-5 | | 11.3-7.2f=-3.87 | | 6+8x-2x=6 | | −3(4+5x)=−102 | | 9+3=-4(7x-3) | | 8y+9-2y=-33 | | 0=(3x+1)(2x-6) | | (a+1)/4+(2a-3)/4=a/2-2 | | 3.2*5=x | | 9+3=-4(7x+3) | | 7x-(3x+2)=10x-8 |

Equations solver categories