If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2-8c-5=0
a = 3; b = -8; c = -5;
Δ = b2-4ac
Δ = -82-4·3·(-5)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{31}}{2*3}=\frac{8-2\sqrt{31}}{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{31}}{2*3}=\frac{8+2\sqrt{31}}{6} $
| 15-6n=-4n-5n | | 5/7m+10=25 | | 3t^2+13t+4=0 | | 3.5(3y-8)=-91 | | -2x+6=11 | | 100−(100−x)= | | 4/5x+10=-2 | | 2x/7-7/8=1/56 | | 5(x+2)=(7x-3) | | 4x/7-7/8=11/56 | | 3(2m-9+6m=3m+29-7m | | 9-y÷3=5 | | 5x/3-7=18 | | 23+1y=1y+25 | | N+6-2n=18+n-12+8 | | 5+20x=x | | -7(x+4)-10=13+5 | | 12n+3=5n | | -8k+1-4k=6-11k | | 13(17-x)=15(6x+1 | | 25-4w=9 | | Y=4/289(x-17)^2+10 | | -8k+1-4k=6-11k-86-4k | | 5(6-3x)=3(x+6)+6 | | 5y=2=3y+13 | | 5x+25(5-x)=65 | | X+(X+3)+(2x+1)=2+5x | | 4a-6=10*3 | | 5y+2=34+13 | | 4a-6=10×3 | | 10+6v=-10+10 | | t=-16t^2+50t+700 |