If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3d^2+2d-2=0
a = 3; b = 2; c = -2;
Δ = b2-4ac
Δ = 22-4·3·(-2)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{7}}{2*3}=\frac{-2-2\sqrt{7}}{6} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{7}}{2*3}=\frac{-2+2\sqrt{7}}{6} $
| 2x+4(1.4)=3x+5 | | 4(-4x-1)+x3=44 | | 213*n=251.25*n | | 9x-9=10x-2 | | 2x^2-5x-104=0 | | 81+b2=256 | | 8(x+2)=2(x+5) | | 6x+3x-4=13+8+14x | | 40+x=121 | | 2n+12=-4(2-3n) | | 2/5d=17/4 | | 5(x+40)=60 | | 2k+3k=85 | | 50-(7/9)=x(2/9) | | 3(x+2)+27x=x | | (2n+1)+(2n+2)=100 | | b+20=11b | | 3y*9=5=12y | | 8x+53+79=180 | | x+3(x+5)-0.5=3(0.25x+4) | | (2n+1)+(2n+2)=19 | | 6=p-20 | | 64+225=m | | 3(x+2)+27x4(8x-9)-3x=x | | 100-4x=0x=-4 | | 2(x/2+6)=3(x-3) | | 2z+1=0z=1/2 | | 2x+2x+2=-2(-2x-1) | | 23=1+4yy=4 | | 9x+7(-2x-6)=-44-3x | | 2x+2x+2=-2(-2x-1 | | 30=3/5m |