If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3f^2+f=4
We move all terms to the left:
3f^2+f-(4)=0
a = 3; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·3·(-4)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*3}=\frac{-8}{6} =-1+1/3 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*3}=\frac{6}{6} =1 $
| 2(5+d)-20=-2 | | 1/4+1/2+x=−34 | | 6-3(10+d)=12 | | -19=5s-4 | | M=-11,b=6.2 | | -38=-3w-2 | | -8(z-11)=24 | | 10/7y-3/70=5/2y | | -5(7+b)=-50 | | 3=15-6(4+r) | | 107y−370= 52y | | 180n/n=360 | | -2v-7v=-99 | | -7s-3s=100 | | 10(5+v)=-60 | | 9(d-1)=54 | | 10r-13=-23 | | |x-1|=|x-2| | | 2x^2-13×+15=0 | | 25=-6v+v | | 10x-19=2x+10 | | -3(y+2)=8y-17 | | 15^-10x=11^x-7 | | 2x-1=×+7 | | 3x-15=-6x-3 | | Q-2m-5m-8=3+(-7)+m | | x(.12)+x=94.24 | | 2=4w-2 | | (5x12)/3=+30-50 | | 0.33x+1.67=2.33x-0.4 | | x-26^-9=5 | | 1/2(3x-4)=8 |