3g(g-7)=2(10+g)

Simple and best practice solution for 3g(g-7)=2(10+g) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3g(g-7)=2(10+g) equation:



3g(g-7)=2(10+g)
We move all terms to the left:
3g(g-7)-(2(10+g))=0
We add all the numbers together, and all the variables
3g(g-7)-(2(g+10))=0
We multiply parentheses
3g^2-21g-(2(g+10))=0
We calculate terms in parentheses: -(2(g+10)), so:
2(g+10)
We multiply parentheses
2g+20
Back to the equation:
-(2g+20)
We get rid of parentheses
3g^2-21g-2g-20=0
We add all the numbers together, and all the variables
3g^2-23g-20=0
a = 3; b = -23; c = -20;
Δ = b2-4ac
Δ = -232-4·3·(-20)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{769}}{2*3}=\frac{23-\sqrt{769}}{6} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{769}}{2*3}=\frac{23+\sqrt{769}}{6} $

See similar equations:

| 5(x+3)+1=5x+2 | | (5x-9)-2x=-6 | | 24=l+0.6 | | 5–3x=2(x+1) | | 9+3=12+v-8/2 | | 8/c​ =9 | | (x-5)(x+3)=(x-7)(x | | 1/3m+1=5 | | (20·(x–5))/50·1=6 | | .5n-3=5 | | 3(w-8)-8=-6(-5w+4)-9w | | 7+3-4/5x=0 | | -9.7h=10.3 | | 5x+4*(10-2x)=x | | -10+r=0 | | 3/5x+8=28 | | 3x+2(-x+5)=12 | | (5+3)j=24~2 | | 611​ =n+97​ | | 6f​ =2.5 | | 10r+7=45 | | 7+6d=133 | | 5x+51=101 | | 5x+3-2x+2(x-7)=x | | x÷20=2 | | 5p+7=3(4–p) | | 13-2t=5t+69 | | 5w​ =3 | | Y=5/2(x+2) | | 19-2b=2b-1 | | 6^2x-2(6^x)-15=0 | | 3(2+5x)-2(1-6x)=1 |

Equations solver categories