If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3h^2+26h+16=0
a = 3; b = 26; c = +16;
Δ = b2-4ac
Δ = 262-4·3·16
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-22}{2*3}=\frac{-48}{6} =-8 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+22}{2*3}=\frac{-4}{6} =-2/3 $
| 7x-+6x-5=4x+4 | | 5+2j=15 | | -2×+10=28+x | | 1c+8.5=38.8 | | 2x^2-24x^2+70x=0 | | 2y^2+6=94 | | y-4/5=-8/15 | | -4(-8n-7)+4n=-7+n | | 8-(7x)=50 | | -4x-4=3 | | 8x+8+9x-3=180 | | 2=-3/2a+2 | | -5(n-2)=8-4n= | | 33y2–43y=0 | | x+-14=32 | | 12=6+3q | | 12+6x=50 | | 4-2m=-12 | | 33x^2–43x=0 | | -6x+-5=-2x+7 | | 0=-4.9x^2+9x | | 4p=6p+8 | | 0=4.9x^2+9x | | 20y2+52y–24=0 | | 10a+100=2 | | 5-8x=3x-6 | | Y+13=17y=4 | | 4+3x=2x-9 | | -7(8r-5)=-413 | | 4.1b-7=8.6b+11 | | -12.64-1.5=-7.2+0.2n | | 6x-3(4x+7)=-63 |