3i(2+5i)+(6-7i)-(9+i)=0

Simple and best practice solution for 3i(2+5i)+(6-7i)-(9+i)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3i(2+5i)+(6-7i)-(9+i)=0 equation:



3i(2+5i)+(6-7i)-(9+i)=0
We add all the numbers together, and all the variables
3i(5i+2)+(-7i+6)-(i+9)=0
We multiply parentheses
15i^2+6i+(-7i+6)-(i+9)=0
We get rid of parentheses
15i^2+6i-7i-i+6-9=0
We add all the numbers together, and all the variables
15i^2-2i-3=0
a = 15; b = -2; c = -3;
Δ = b2-4ac
Δ = -22-4·15·(-3)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{46}}{2*15}=\frac{2-2\sqrt{46}}{30} $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{46}}{2*15}=\frac{2+2\sqrt{46}}{30} $

See similar equations:

| -5.6x+1.2=1.8+8.6 | | 3y+4=19.9 | | 3r/4=1/6 | | 30+3x=80-7x | | 0.15=x-0.25x | | 12d-2+3d=5 | | 2/7-5+13=-5/7d-14 | | 14=2(h-3) | | 10/8x-14=-4 | | 22+3h=-5 | | 25=2w+3 | | W-4w=8 | | -6v(v+9)+3v+6=5v+12 | | 3n-(-5)=8 | | –11=–2+–3h | | 51+14m=219 | | 24x-56=-6x+46 | | 3-7x=-7.5+5x | | |x-6|+4=3 | | 3x+15+10x+9=90 | | 1.21-4j=-12.39 | | 0.5(x*6)=960 | | 8x-3(x+2)=x-6 | | 3(n+11)–5n=-2(n–12)+9 | | 8x-20+7x-11=180 | | n+9n=6 | | -2+10x=8x-34 | | -20n+8=-10n-42 | | 17+18p=-18+15p+8p | | 7z-3z=3 | | 26n-153=289 | | 0.27=3-x |

Equations solver categories