If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3j^2+9j+4=0
a = 3; b = 9; c = +4;
Δ = b2-4ac
Δ = 92-4·3·4
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{33}}{2*3}=\frac{-9-\sqrt{33}}{6} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{33}}{2*3}=\frac{-9+\sqrt{33}}{6} $
| 9r−5r=16 | | 6k-k-3k=8 | | 20+32x=-46x=8 | | 15a+6a-20a=14 | | 14x+15x—18=-11 | | 7x-4=3+8 | | 5n/3-5=3n/2 | | 20+32x=-46=8 | | 4x-3x-1=12 | | 2^5x+1=6x | | 6n-6n+5n-4n+1=19 | | 6c-4c-c+c=20 | | 14g-4g=10 | | 4x2+64x+240=0 | | s+103=965 | | 3x-1=1÷2×5x+33 | | 2(2x+6)=10+8 | | 18t-10t-4t+2t+3t=18 | | 8r-5r-1=14 | | 4x−3x−1=12 | | 2j-2j+3j=15 | | 14/16=x/100 | | c/9=14 | | -9/w=3 | | 10h-10h+2h+3=15 | | 8x-5x-2x+5x+2=14 | | 4(1x+8)=9+14 | | 4(x+7)-2x=-2(4+x) | | x=29-3(9-4)x=29-3(9-4)x=29-3(9-4)x=29-3(9-4)x=29-3(9-4) | | -4x2-3x+1=0 | | 7z-6z=7 | | 8n-3n-3n=14 |