If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k(1-k)+5(k+1)=0
We add all the numbers together, and all the variables
3k(-1k+1)+5(k+1)=0
We multiply parentheses
-3k^2+3k+5k+5=0
We add all the numbers together, and all the variables
-3k^2+8k+5=0
a = -3; b = 8; c = +5;
Δ = b2-4ac
Δ = 82-4·(-3)·5
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{31}}{2*-3}=\frac{-8-2\sqrt{31}}{-6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{31}}{2*-3}=\frac{-8+2\sqrt{31}}{-6} $
| 16(g+12)=528 | | 7w−5w+w+2w−2w=18 | | -4x^2=80+8x | | 90=75+(5x-1) | | 100=(x+7)•9 | | 16g(g+12)=528 | | 6a+2a=90 | | −12s−48=−12s−48= −48−48 | | 36=4+y+1 | | 32w+10w-40w+10w=12 | | 114=3x+45 | | 2p+193.99=284.97 | | 30h+48=978 | | 1/2x-7=1/3(x-13) | | 3u-3u+5u=15 | | 2.4x+1700=1350+1.6x | | 2j+5j-3j-j=15 | | 7=a11 | | y+23.076=30.5 | | 12n+n-2n-7n=16 | | 3n=0.45n= | | r−3.4=13.1 | | 9p-5p-3p=5 | | −3m=120 | | 2(3n-2)-6=3(n+5)-1 | | 16y=992 | | −3m=120. | | 16y=991 | | 64⋅n=32. | | 10=f/6-12 | | 2x+5=2x=3 | | Y=5(1.09)^x |