If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k(2k+1)=0
We multiply parentheses
6k^2+3k=0
a = 6; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·6·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*6}=\frac{-6}{12} =-1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*6}=\frac{0}{12} =0 $
| 12x-1+90=180 | | 7=s+3.75 | | Y=2x-+1 | | 3/4x-5/6=2/3x+4 | | (x+4)²=x²+4² | | 9(w-8)=-126 | | 11-x=3(x-7)+12x | | 7x-8+3x=8 | | 11=w/5+1 | | 14-2(3-5x)=7x-6-3x+8x | | 1a+2a=3 | | 12-7x=24-9x | | -w/8=30 | | 6-5y=-39 | | (8+w)(4w+2)=0 | | (5^1/3)^x=5. | | 5^x=22 | | 5-(-2x+1=-9(x+1) | | 2176.2=6606.6-170.4m | | 22176.2=6606.6-170.4m | | 6606.6-170.4m=2176.2 | | 85-r=42 | | 60=93-n | | 254.1+83.7m=2514 | | 549-s=342 | | 2.2q-4.5-2.7q=1.5q-5.1 | | 2=1.6^x | | 254.1+83.7m=6606.6-170.4m | | 25.1+83.7m=6606.6-170.4m | | -8x+(-16)=32 | | ∠A=7x+40 | | -2s-8=-s |