3k(k+1)+11=2(4+5k)+3

Simple and best practice solution for 3k(k+1)+11=2(4+5k)+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k(k+1)+11=2(4+5k)+3 equation:



3k(k+1)+11=2(4+5k)+3
We move all terms to the left:
3k(k+1)+11-(2(4+5k)+3)=0
We add all the numbers together, and all the variables
3k(k+1)-(2(5k+4)+3)+11=0
We multiply parentheses
3k^2+3k-(2(5k+4)+3)+11=0
We calculate terms in parentheses: -(2(5k+4)+3), so:
2(5k+4)+3
We multiply parentheses
10k+8+3
We add all the numbers together, and all the variables
10k+11
Back to the equation:
-(10k+11)
We get rid of parentheses
3k^2+3k-10k-11+11=0
We add all the numbers together, and all the variables
3k^2-7k=0
a = 3; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·3·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*3}=\frac{0}{6} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*3}=\frac{14}{6} =2+1/3 $

See similar equations:

| -9=m/4-7 | | -7+b=-9 | | X+2-3x-6=D | | -7=-2r+1 | | 3x+21÷8=24 | | 2/5x=-7/8 | | 66-8j=3j | | 7(x-1)+1=3x+4(-1+x) | | b=70+(20+6) | | 5x+40•2x=360 | | 62=6x-2(-2x+9) | | 7-2(x10)=15 | | 9x+6x=9x | | 3x-6x-14=-3x+5-14 | | 3w-4=2w | | b=50+(25+8) | | 268=184-y | | (5x-20)+(2x+10)=18 | | -18=m-8 | | 24=n-(-11) | | 5.6=8.6-0.5x | | 23=5-6y | | (.5)e=6 | | 4=v+(-3) | | 4x−4=5x−8 | | (-1.5)e=6 | | 7x-3x-3=4x+6 | | 5.6=8.5-0.5x | | -19p=266 | | 8+9y-77=180 | | (6x-5)(3x+2)=x | | -105=-15p |

Equations solver categories