If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+10k+8=0
a = 3; b = 10; c = +8;
Δ = b2-4ac
Δ = 102-4·3·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2}{2*3}=\frac{-12}{6} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2}{2*3}=\frac{-8}{6} =-1+1/3 $
| 6x=3x-4=32 | | u/4-2=-10 | | 7-2x=x+1 | | 6x10=-50-4x | | (8/y)+(5/7)=(1/(7y)) | | 2(-10-9y)+8y=0 | | -(2)/(4)=(x)/(8) | | 7(x+2)–10=7x+4. | | 5x+2^x=0 | | -2(-6-7h)+h=145 | | 3x+6=2-x-6 | | 3+5x-5x=15 | | 14x-(34x-6+8=0 | | 2.5+70t-16t^2=0 | | 13x-6=(2)(21x+8) | | 2(6x+4)-6+2x=3(4x=3)=1 | | -3(1+8n)-23=2n | | 16t^2+70t-16t^2=0 | | 7x+7=8+16 | | 27=2w+13 | | 3x+×÷2=200 | | 2x+290=360 | | 5z+6=10 | | -1,5x-2=1/3x-2 | | 7x9=68 | | 8s-3=-19 | | 4(7x=1)=-220 | | z9+2=7 | | 4(7x=1)+-220 | | 1xx1xx1xx1xx1x=32 | | xxxxxxxxx=32 | | 920=2d+250 |