If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+4k+1=0
a = 3; b = 4; c = +1;
Δ = b2-4ac
Δ = 42-4·3·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2}{2*3}=\frac{-6}{6} =-1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2}{2*3}=\frac{-2}{6} =-1/3 $
| 1-0.95^x-x(0.05)(0.95)^(x-1)=0.9 | | a2+8a+15=0 | | z/10-9=-4 | | t÷4-2=14 | | 10m=3=93 | | (5x-7)=(15x-1) | | 27/2x=9 | | 4z/10=2=-1 | | 6x-23=25x= | | 9y=6=39 | | z/9=4=1 | | 6n8=84 | | 220=260-4m | | 5x+140=360 | | 4x+280=360 | | 9n5+5=59 | | 7(x−5)=5(x+3) | | 4(x+4)=6(x+3) | | -4x+4=-x2 | | x+112-3-2x4=x-58 | | 3x-65=4-3x+22 | | 3-1-x2=4x+53-2 | | 2x+36+1=x-23 | | x+34=3+2x5 | | 6x+3=-15×= | | 2x-10+x-5=90. | | -(-3x+5)+2x+3·(4-3x)=0 | | (c-5)/8=4 | | 6x+3·(2+x)-1=5x-2+9 | | -2·(3+4x)=2·(x-8) | | 7+(3x-1)-4x=5x-(1-x) | | 11-3*(2x-4)=2x-12 |