If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-7m-40=0
a = 3; b = -7; c = -40;
Δ = b2-4ac
Δ = -72-4·3·(-40)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-23}{2*3}=\frac{-16}{6} =-2+2/3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+23}{2*3}=\frac{30}{6} =5 $
| x(x+1)=(x+2)(x-4) | | 2-3(2x-1)+4=-3(2x-8)+x-1 | | Z⁴-z²-16=0 | | A=5(3.14)r^2 | | -2x(-0.75)=0 | | Z⁴-z²=16 | | 15-5(x-1)=30 | | k=2k-7k= | | Y/y+3=7/8 | | m^2+12m-8=0 | | 3x-4+5x-8=9-3x+1-4x+8 | | M=1.5v=0.027 | | 5(4-z)=30 | | x/0.1=1.1 | | b-3/5=12 | | 6x^2+16x=2 | | 2x²+5x=3 | | 2(2114-y)+3y=5450 | | 550=12x-(4.25x+655) | | 5(2k+3)-7k=21 | | f^-1(2)=2/(2-5(2)) | | 180=2x+4×4 | | f-1(2)=2/(2-5(2)) | | 1024^n=64 | | 4.905t^2-14.79t-13=0 | | -11(-7x+2)+6=7(x-1) | | X/4=2+x-3|3 | | x/6=x/7(-10) | | 0.16(y-9)+0.18y=0.10y-1.8 | | y/4=7+3 | | f(2)=2/(2-5(2)) | | (2x-5)(4-2x)(8+x)=0 |