3n(n+1)/(n-1)=126

Simple and best practice solution for 3n(n+1)/(n-1)=126 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n(n+1)/(n-1)=126 equation:



3n(n+1)/(n-1)=126
We move all terms to the left:
3n(n+1)/(n-1)-(126)=0
Domain of the equation: (n-1)!=0
We move all terms containing n to the left, all other terms to the right
n!=1
n∈R
We multiply all the terms by the denominator
3n(n+1)-126*(n-1)=0
We multiply parentheses
3n^2+3n-126n+126=0
We add all the numbers together, and all the variables
3n^2-123n+126=0
a = 3; b = -123; c = +126;
Δ = b2-4ac
Δ = -1232-4·3·126
Δ = 13617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13617}=\sqrt{9*1513}=\sqrt{9}*\sqrt{1513}=3\sqrt{1513}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-123)-3\sqrt{1513}}{2*3}=\frac{123-3\sqrt{1513}}{6} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-123)+3\sqrt{1513}}{2*3}=\frac{123+3\sqrt{1513}}{6} $

See similar equations:

| -21-5x=2(4x-4) | | W=5+3x-3 | | -3k-6(1+6k)=-6k+27 | | 4(2c-15)=12 | | 3x-32=-5 | | 3x+-7=14 | | -6(4n+6)=6n+24 | | y′′+6y′′+11y′+6y=0 | | y′′′+6y′′+11y′+6y=0 | | -5b+5(1+5b)=-18-3b | | 3x+-2=-2 | | 13(x+3)=39 | | (-5)-x=3 | | 7(5x-5)=210 | | -6x^2+9x-1=-18x+13 | | 11x+15=14-7x | | 7(5x-)=210 | | 0.10(x+2000)=4900 | | 5x-5=5(3-3x) | | 4x-1=105 | | 8(2z-6)+4(-1-5z)=0 | | -4(1-4a)=20+4a | | -3(-4-6z)+7(-z+5)=-8 | | -4x+16=-6(-6+4x) | | -20=-3(3-3r)+7(3r+7) | | 2/5x-2/7=1/7 | | -3+p-7=-7 | | 6.8+7^8x=93.2 | | 2/3x+16=5/4x-5 | | -5x+6(6-4x)=6+x | | (x-1)^2+5=10 | | (2)/(3)x+16=(5)/(4)x-5 |

Equations solver categories