3n(n+2)=9(6-n)

Simple and best practice solution for 3n(n+2)=9(6-n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n(n+2)=9(6-n) equation:



3n(n+2)=9(6-n)
We move all terms to the left:
3n(n+2)-(9(6-n))=0
We add all the numbers together, and all the variables
3n(n+2)-(9(-1n+6))=0
We multiply parentheses
3n^2+6n-(9(-1n+6))=0
We calculate terms in parentheses: -(9(-1n+6)), so:
9(-1n+6)
We multiply parentheses
-9n+54
Back to the equation:
-(-9n+54)
We get rid of parentheses
3n^2+6n+9n-54=0
We add all the numbers together, and all the variables
3n^2+15n-54=0
a = 3; b = 15; c = -54;
Δ = b2-4ac
Δ = 152-4·3·(-54)
Δ = 873
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{873}=\sqrt{9*97}=\sqrt{9}*\sqrt{97}=3\sqrt{97}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{97}}{2*3}=\frac{-15-3\sqrt{97}}{6} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{97}}{2*3}=\frac{-15+3\sqrt{97}}{6} $

See similar equations:

| 5(9y-3)+4(7+y)=111 | | 12-5r=2r+1 | | Y=0.14+0.5x(x=90) | | 4(7x+8)=88 | | 6/17=3/x | | 8n^2-55n-7=0 | | 35+5x=55 | | 9x−2=7x+6= | | -4(-5w+4)-7w=5(w-4)-8 | | 15n−13n=12 | | 4(8x-6)+3(5+x)=61 | | 1/6x=78 | | 4x+7=9x+6 | | 8b^2+56b+80=0 | | 15-4x=6(x-11) | | 3(7x+9)=195 | | 2x=7x+4 | | -v/3=-53 | | 245=6x-4 | | 9(4x-5)+7(2+x)=227 | | (X+6)+x=120 | | w1/3=91/3-1 | | 54=6x+12 | | -4z+17=-4z+17 | | 17=n-(.25n) | | 3x−1=-2x+39 | | 10x-5+8x-13=170 | | 8x-9°=53° | | 34x-3x=85 | | 5p(2p−7)=0 | | 2k+9=27 | | 24+6s=-48 |

Equations solver categories