3n+8-6n=n+84-3/8n

Simple and best practice solution for 3n+8-6n=n+84-3/8n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n+8-6n=n+84-3/8n equation:



3n+8-6n=n+84-3/8n
We move all terms to the left:
3n+8-6n-(n+84-3/8n)=0
Domain of the equation: 8n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
3n-6n-(n-3/8n+84)+8=0
We add all the numbers together, and all the variables
-3n-(n-3/8n+84)+8=0
We get rid of parentheses
-3n-n+3/8n-84+8=0
We multiply all the terms by the denominator
-3n*8n-n*8n-84*8n+8*8n+3=0
Wy multiply elements
-24n^2-8n^2-672n+64n+3=0
We add all the numbers together, and all the variables
-32n^2-608n+3=0
a = -32; b = -608; c = +3;
Δ = b2-4ac
Δ = -6082-4·(-32)·3
Δ = 370048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{370048}=\sqrt{3136*118}=\sqrt{3136}*\sqrt{118}=56\sqrt{118}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-608)-56\sqrt{118}}{2*-32}=\frac{608-56\sqrt{118}}{-64} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-608)+56\sqrt{118}}{2*-32}=\frac{608+56\sqrt{118}}{-64} $

See similar equations:

| -2+8=-3x+14 | | |3n-6|+18=9 | | -5b+10=60 | | 1/2(8y)=52 | | 52=1/28y | | 5(q-2)+q=6(q+3)-4 | | -85=-6(a+5)-5a | | 3(p-2)+p=6(p+3)-4p | | w=12=8 | | 4(5b-3)=-72 | | 3n+2(n-1)=9n+4 | | 5x2=100/ | | 4x5=30- | | 5(5x-6)=-80 | | 14.7(5x-2)=6(6x-1) | | 2x^2.2x=420 | | 5x/17=3x-12 | | 5(6-2v)+1=71 | | -8(-6+2k)=-8(6k+6) | | 2.5x*x=5x-3 | | -4(4+4r)=64 | | -39=-u/8 | | 4x/7=2x-10 | | 4x+8/4=2x-6 | | 4(10m-5)=25+2(40-5m) | | 10-3x=2x-8x+240 | | 6x+8-4=3x+8 | | -4(2n+1)-5n=74 | | 11+9=-4(6x-5) | | 4-x/5+x+2/3=6 | | 2(6n-4)=-68 | | 3/4+m=21/8 |

Equations solver categories