If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+10n-25=0
a = 3; b = 10; c = -25;
Δ = b2-4ac
Δ = 102-4·3·(-25)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-20}{2*3}=\frac{-30}{6} =-5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+20}{2*3}=\frac{10}{6} =1+2/3 $
| 5y-2=10y+28 | | x(x-1)(x-2)(x-3)=10 | | 7-x=2x+21 | | 2(x+3)^2-3=51 | | (6x+15)-(4x+6)=5 | | 3z-2=z+2 | | (3x-5)6+12=36 | | 3n2+10n=25 | | -9(u-3)=-4u+42 | | -7/8x=-14/72 | | 7x-15+2x=5+9x-20 | | 35=-7u/5 | | 4x+21=12 | | 3x+3=-2×-12 | | 10x-6=4x-24 | | 11x+2=13x+146 | | R=4+7x-5x | | -2b+5b=3+5b-1+10 | | 7^2+y^2=144 | | -8z+-24-12=4 | | 7(r+7)=5r+49 | | 11^2+y^2=144 | | -33-(-29)=x/5 | | 0=7x-3-4x-x | | x2-x-12=0 | | 36=6b/2 | | 2(5-3x)=x-4(3-x | | 1/7a=21/2 | | 10^2+y^2=144 | | x+97=31 | | 2(3m+3)-6=36 | | 2-(9-u)2+u=-50 |