If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+11n+4=0
a = 3; b = 11; c = +4;
Δ = b2-4ac
Δ = 112-4·3·4
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{73}}{2*3}=\frac{-11-\sqrt{73}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{73}}{2*3}=\frac{-11+\sqrt{73}}{6} $
| f(6)=-1/6(6)-2 | | 5b-2(7-b)=0 | | –2(q+9)=–10 | | (134+x)+(x+64)=180 | | 8+8g=9g+5 | | 30-2n=4n | | (134+x)=(x+64) | | x+(6+8)=8 | | 3x+4=(-2x) | | (5x+3)=57 | | ƒ(x)=√x-5+2 | | (10x+7)+(15x-2)=180 | | -6(x+1)=-27-3x | | x+4√18=12√18 | | (10x+7)=(15x-2) | | r4+15=18 | | -b+3b=-7+5b+7-3b | | 6x+5=1x+8 | | 3(5x+2)(5x-2)=0 | | 4x=2x+35 | | F(4.8)=x | | 0.3j+7=20 | | g(0)=0+7 | | -4n+8=14-2n | | -2.24=8+y/8 | | y+–51=9 | | 7/15=b-1/15 | | -5(r+6)=84 | | F(9.3)=x | | x/3+17=44 | | -x^2-2x+19=-29 | | R(p)=-5p+20000p |