If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+237n-4590=0
a = 3; b = 237; c = -4590;
Δ = b2-4ac
Δ = 2372-4·3·(-4590)
Δ = 111249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{111249}=\sqrt{9*12361}=\sqrt{9}*\sqrt{12361}=3\sqrt{12361}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(237)-3\sqrt{12361}}{2*3}=\frac{-237-3\sqrt{12361}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(237)+3\sqrt{12361}}{2*3}=\frac{-237+3\sqrt{12361}}{6} $
| 21/4x=9- | | 0.5x+0.75=0.87 | | 3x^2+12x+13=(2x+5)(2x+5) | | 85x+83=91x-283 | | .10x+.25(x+4)=1.7010x+25(x+4)=17010x+25x+100=17035x+100=17035x=70x=2 | | 26z=-910 | | 12x+4=11x15 | | x/5=6=8 | | .10x+.25(x+4)=1.70 | | 9(y+2)=3y+42 | | -5(x+2)+3x=x-2x+2-3x | | -5(x+2)+3x=5x-10 | | -9x=2.7 | | -7/3*8/9=x/27 | | y/5+13=34 | | 32+7=x | | 16n2+n-2304=0 | | 3(4-2x)+2=4(2x+3) | | a/14+6=8 | | 15n2+137n-8740=0 | | 40x=26x+8 | | 36x=x-4x | | (2a-4)+2(a-5)=3(a+1) | | 1-3+a=5/4 | | 3x+9=11x-71 | | -3x^-x+2=0 | | 5.3x-5.14=6.573 | | 2x^-6x+12=0 | | 36x=x-2x | | 26=x/4+11 | | 2.5x+1.9=6.3 | | 4(2x+3)=4x |