If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+35n-852=0
a = 3; b = 35; c = -852;
Δ = b2-4ac
Δ = 352-4·3·(-852)
Δ = 11449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11449}=107$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-107}{2*3}=\frac{-142}{6} =-23+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+107}{2*3}=\frac{72}{6} =12 $
| 7-5z=-1 | | x*2+9x=36 | | 1/2x*3=18 | | 19-n=11 | | (9d-7)=((6d+7) | | N+1.2n=6.6 | | 6y+12=62 | | 12y+13=62 | | 14x9=-(5/8x-17) | | 4x+6.x=-2 | | 3x+6.x=9 | | X+-5.x=-5 | | k+4k+6=0 | | 3x+7.x=2 | | 6x+3.x=2 | | x+2.x=-2 | | 9x+12.x=1 | | 9-x.x=8 | | 7x-2.x=5 | | X-12.x=2 | | 6x+2.x=2 | | 20/35=x/8 | | X-2y=1500 | | 34-7x=12 | | 8x+1.x=2 | | x+20+(x/3)=180 | | 10-3x.x=1 | | 12x+6.x=3 | | x-2.x=8 | | 5x+6.x=2 | | 34=7x+45 | | 2x-5.x=3 |