If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+5=30
We move all terms to the left:
3n^2+5-(30)=0
We add all the numbers together, and all the variables
3n^2-25=0
a = 3; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·3·(-25)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*3}=\frac{0-10\sqrt{3}}{6} =-\frac{10\sqrt{3}}{6} =-\frac{5\sqrt{3}}{3} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*3}=\frac{0+10\sqrt{3}}{6} =\frac{10\sqrt{3}}{6} =\frac{5\sqrt{3}}{3} $
| (5+v)(3v+7)=0 | | 175=35/2x | | 13x+16=7x+20 | | X2+y2-64=0 | | 4x+1.3x+9=-3 | | 5+x2=-3 | | 300+.014×=200+.025x | | 10/15=x/9 | | (2/3x)-6=3+(1/2x) | | 3n+4=3(n+) | | c+10=49 | | 2/r+5/3r=1 | | 6x+30+5x+12+2x+8=180 | | 6x-23=9x+4 | | 8-0.8(j-5)=0.6(2j-5) | | X2+y2-16=0 | | 2/2500=x/105625 | | 5x+9=4x-4 | | X2+y2-25=0 | | X2+y2+64=0 | | n2-2n-899=0 | | 3m-2(m+7)=2m+4 | | Y=3x(1/2)x-2+1 | | Y=4x2x+1+2 | | 11-0.6(t-5)=0.2(7t-5) | | 3=13b+6(b²-2) | | Y=5x(1/2)x+2-1 | | 12p-23=5 | | Y=4x2x-2-1 | | 6.1-x=3.3 | | 16^2x=124 | | 2(3k²-1)+15=16k |