If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+8n-115=0
a = 3; b = 8; c = -115;
Δ = b2-4ac
Δ = 82-4·3·(-115)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-38}{2*3}=\frac{-46}{6} =-7+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+38}{2*3}=\frac{30}{6} =5 $
| 15=8-7v | | (8x-6)(5x+1)=0 | | 2x^2-864=0 | | 5n2+9n-72=0 | | (13x+45)+(6x+2)=180 | | 46=8y+6 | | 5+4x-7=4x-3-x | | -3x-2=2x+3, | | 3p^2+7+p^2=713p2+7+p2=71 | | 4x2-1x-14=0 | | 17p+12=10p-13-7 | | 12y^2+8y=130 | | 2x+40=150 | | -4m2-9m+63=0 | | 56/k=7 | | -16t^2+62t+24=0 | | 2x-40=110 | | 4x-20+4x-20=180 | | 21-2g=5 | | 5b2-45=0 | | 3x+1+1=20 | | 7(x+9)+8=71 | | 3x=73-1 | | 0=-2√3x=2 | | 6x+7+55=180 | | 5x2−35x=0 | | 4/5-x/20=2x+16/40 | | -3/4x+1/2=3/8 | | 8c+5c-12c=10 | | -16^2+62t+24=0 | | 12c-9=27 | | z^2=+7z=-10 |