If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-11n-874=0
a = 3; b = -11; c = -874;
Δ = b2-4ac
Δ = -112-4·3·(-874)
Δ = 10609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10609}=103$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-103}{2*3}=\frac{-92}{6} =-15+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+103}{2*3}=\frac{114}{6} =19 $
| -1+a/18=1 | | p+8/6=-2 | | -1+6n=17 | | x-6/2=7 | | p/5+3=5 | | -3v+8=-13 | | 3x+2x+x=50 | | 2t+5-3t+4=5t-33 | | X+3-2x=x-9 | | 3x-6+2x=1-3x+25 | | 5+2m-50=m+7 | | X+(+2)=(x+4)÷31 | | 3x/5=4x/6 | | 3x-1/5=4x+2/6 | | 9z-7/3z+5=3z-4/z+6 | | a²=13a⁴-7 | | a²=13,a⁴-7 | | 7y+8/9=9 | | L=78mW=7mH=14m | | a²13=a⁴-7 | | L=78m | | x+x*3=12 | | 7x+13=15+(x+10) | | 19x-11=11x+(7x+5) | | a²=13 | | 10x+1=16+5x | | 0.5+x=140/x-30 | | 5x+15=11+9x | | 3x-7=5x-14 | | 2x-17=14+(x-12) | | 5x+13=17+(6x-14) | | 18x-11=10x+(7x+8) |