If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2=29
We move all terms to the left:
3n^2-(29)=0
a = 3; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·3·(-29)
Δ = 348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{348}=\sqrt{4*87}=\sqrt{4}*\sqrt{87}=2\sqrt{87}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{87}}{2*3}=\frac{0-2\sqrt{87}}{6} =-\frac{2\sqrt{87}}{6} =-\frac{\sqrt{87}}{3} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{87}}{2*3}=\frac{0+2\sqrt{87}}{6} =\frac{2\sqrt{87}}{6} =\frac{\sqrt{87}}{3} $
| 3(4r+1)=-21 | | (4x-7)^3=0 | | 68=6r+5 | | −x4+8x2−15=0 | | 4897=7u-3 | | 4897=7v-3 | | 3=4q-1 | | 6s-9=39 | | 71.80=p/17.95 | | 3x-7)/12-(1/6(2x-3)-(x-1)/8)=0 | | (3x-7)/12=1/6(2x-3)-(x-1)/8 | | -2+x2/5-3=0 | | -x⁴+8x²-15=0 | | 3z/8=-21 | | 196/x=5 | | 2x^3-5x^2+4x+0=0 | | x=4(3)-11 | | x=4x(3)-11 | | 15(x^2+8)=(15^3)^2x | | 107+(5x+28)=180 | | 122(x)=7x-4 | | 32+x/3=2 | | -2.5x/0.72=x | | x=2x-3x+4x=8 | | $x=2x-3x+4x=8$ | | $x+2x+3x+4x+5=45$ | | 4÷x=35÷105 | | 4/x=35÷105 | | (h-3)^2=16 | | (3x-1)/x=x+1 | | x-2=(20+x)/3 | | x-2=20+x/3 |