If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p(2)-5p-28=0
We add all the numbers together, and all the variables
3p^2-5p-28=0
a = 3; b = -5; c = -28;
Δ = b2-4ac
Δ = -52-4·3·(-28)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-19}{2*3}=\frac{-14}{6} =-2+1/3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+19}{2*3}=\frac{24}{6} =4 $
| -4(8-n5)=13 | | 4y^2+16y=65 | | 5/7+j=1.2/5 | | 3c-12=14-4c | | 6+10=3y | | -0.55p-2=0.45 | | 35n+12=40n+43 | | -3+y=14 | | 2q+385=837 | | 12x=-14.4 | | 2g−9=11 | | 2x=15=30 | | 5-(1/2x3/8=(5/8x8/3)+2 | | 1125=15(w+20) | | 2x-5=(x+3) | | 4y=16.3=53.1 | | 5-1/2x=5/8x+2x=8/3 | | 2x-172=92-10x | | s3+ 2=4 | | t+20=2t+10 | | X÷102-x=6+11÷102-x | | 3638=34(p+25) | | 18x-18x=21x-18x-12 | | 9x+3=1+13x | | -7/5+8/3u=-1/3 | | X-3+2y=0 | | 7/9=y+2/9 | | (6y+7)-(6+5y)=10 | | 9(x-20)=830 | | 161+2h=937 | | 3+4x-6/5=5 | | v/3+16=40 |