3p(p+14)=5

Simple and best practice solution for 3p(p+14)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3p(p+14)=5 equation:


Simplifying
3p(p + 14) = 5

Reorder the terms:
3p(14 + p) = 5
(14 * 3p + p * 3p) = 5
(42p + 3p2) = 5

Solving
42p + 3p2 = 5

Solving for variable 'p'.

Reorder the terms:
-5 + 42p + 3p2 = 5 + -5

Combine like terms: 5 + -5 = 0
-5 + 42p + 3p2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1.666666667 + 14p + p2 = 0

Move the constant term to the right:

Add '1.666666667' to each side of the equation.
-1.666666667 + 14p + 1.666666667 + p2 = 0 + 1.666666667

Reorder the terms:
-1.666666667 + 1.666666667 + 14p + p2 = 0 + 1.666666667

Combine like terms: -1.666666667 + 1.666666667 = 0.000000000
0.000000000 + 14p + p2 = 0 + 1.666666667
14p + p2 = 0 + 1.666666667

Combine like terms: 0 + 1.666666667 = 1.666666667
14p + p2 = 1.666666667

The p term is 14p.  Take half its coefficient (7).
Square it (49) and add it to both sides.

Add '49' to each side of the equation.
14p + 49 + p2 = 1.666666667 + 49

Reorder the terms:
49 + 14p + p2 = 1.666666667 + 49

Combine like terms: 1.666666667 + 49 = 50.666666667
49 + 14p + p2 = 50.666666667

Factor a perfect square on the left side:
(p + 7)(p + 7) = 50.666666667

Calculate the square root of the right side: 7.118052168

Break this problem into two subproblems by setting 
(p + 7) equal to 7.118052168 and -7.118052168.

Subproblem 1

p + 7 = 7.118052168 Simplifying p + 7 = 7.118052168 Reorder the terms: 7 + p = 7.118052168 Solving 7 + p = 7.118052168 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-7' to each side of the equation. 7 + -7 + p = 7.118052168 + -7 Combine like terms: 7 + -7 = 0 0 + p = 7.118052168 + -7 p = 7.118052168 + -7 Combine like terms: 7.118052168 + -7 = 0.118052168 p = 0.118052168 Simplifying p = 0.118052168

Subproblem 2

p + 7 = -7.118052168 Simplifying p + 7 = -7.118052168 Reorder the terms: 7 + p = -7.118052168 Solving 7 + p = -7.118052168 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-7' to each side of the equation. 7 + -7 + p = -7.118052168 + -7 Combine like terms: 7 + -7 = 0 0 + p = -7.118052168 + -7 p = -7.118052168 + -7 Combine like terms: -7.118052168 + -7 = -14.118052168 p = -14.118052168 Simplifying p = -14.118052168

Solution

The solution to the problem is based on the solutions from the subproblems. p = {0.118052168, -14.118052168}

See similar equations:

| -3(x+3)=-3(x+1)-5 | | 12=.7g-44 | | x^2+5=9 | | 2+y=3x | | 1.2k+20=140 | | -4x-8=12 | | 2.9a+3.7=15.3 | | 18x^3-15x^2=3x | | 22+5p=58 | | 400y-800=600 | | 5a+4=3a+5 | | x^3+3x^2-4x=0 | | 5x+3(2-x)=12 | | x+5=-23+13 | | 4(4k+1)-8(k-1)=3(2k+4)-2 | | 2x+10+26=212 | | 4(x+1)+8=24 | | x+5=-15+13 | | -7(x-2)=42 | | 5c-c+10=34 | | 48(x-9)=1104 | | -10z=0.5 | | 49p^2=121 | | 17(x+13)=884 | | Y^5-8y^4=0 | | 4x-6=-26 | | 3x^2-18x+5=0 | | 36t^2=49 | | x(2x-3)=9 | | 3x(6x-7)=4 | | -3x^2-8x+16=0 | | 4x+y+98=0 |

Equations solver categories