If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3p(p + -1) = 2(1 + -1p) Reorder the terms: 3p(-1 + p) = 2(1 + -1p) (-1 * 3p + p * 3p) = 2(1 + -1p) (-3p + 3p2) = 2(1 + -1p) -3p + 3p2 = (1 * 2 + -1p * 2) -3p + 3p2 = (2 + -2p) Solving -3p + 3p2 = 2 + -2p Solving for variable 'p'. Reorder the terms: -2 + -3p + 2p + 3p2 = 2 + -2p + -2 + 2p Combine like terms: -3p + 2p = -1p -2 + -1p + 3p2 = 2 + -2p + -2 + 2p Reorder the terms: -2 + -1p + 3p2 = 2 + -2 + -2p + 2p Combine like terms: 2 + -2 = 0 -2 + -1p + 3p2 = 0 + -2p + 2p -2 + -1p + 3p2 = -2p + 2p Combine like terms: -2p + 2p = 0 -2 + -1p + 3p2 = 0 Factor a trinomial. (-2 + -3p)(1 + -1p) = 0Subproblem 1
Set the factor '(-2 + -3p)' equal to zero and attempt to solve: Simplifying -2 + -3p = 0 Solving -2 + -3p = 0 Move all terms containing p to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + -3p = 0 + 2 Combine like terms: -2 + 2 = 0 0 + -3p = 0 + 2 -3p = 0 + 2 Combine like terms: 0 + 2 = 2 -3p = 2 Divide each side by '-3'. p = -0.6666666667 Simplifying p = -0.6666666667Subproblem 2
Set the factor '(1 + -1p)' equal to zero and attempt to solve: Simplifying 1 + -1p = 0 Solving 1 + -1p = 0 Move all terms containing p to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -1p = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -1p = 0 + -1 -1p = 0 + -1 Combine like terms: 0 + -1 = -1 -1p = -1 Divide each side by '-1'. p = 1 Simplifying p = 1Solution
p = {-0.6666666667, 1}
| 7+27x=88 | | 13d=52 | | 525=-0.5x^2+36x-87 | | 12x-10=4x+5 | | 2/5x-5≥3 | | 7-x/10≥12 | | 1.8b=9 | | 1/3p-n | | a-4.2=16.8 | | 3x^2-12+9=0 | | 7-8x/1012 | | 5y-3=2y+1 | | 4a+87b+34c=0 | | 30-8b=-2(1+8b) | | 15x+27=19-31x+8 | | (2/5)a=0 | | 3/4x=110 | | 2x+10=x+8+10 | | Logb=xloga | | (x-97)(x-3)=0 | | x^3-30x+3=0 | | 5a+7b=57 | | 5d-7=13 | | 72.1y= | | 4/9-(7/9-2/9) | | 1/5×10.5 | | 1/7×10.5 | | a^3-6b^2+59c=6 | | 21x^2-12x=-1 | | f(x+7)=x^2+8x+45 | | 9+6x=36 | | 6+5x=456 |