3p-1=5(p+1)-2(7-2p)

Simple and best practice solution for 3p-1=5(p+1)-2(7-2p) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3p-1=5(p+1)-2(7-2p) equation:


Simplifying
3p + -1 = 5(p + 1) + -2(7 + -2p)

Reorder the terms:
-1 + 3p = 5(p + 1) + -2(7 + -2p)

Reorder the terms:
-1 + 3p = 5(1 + p) + -2(7 + -2p)
-1 + 3p = (1 * 5 + p * 5) + -2(7 + -2p)
-1 + 3p = (5 + 5p) + -2(7 + -2p)
-1 + 3p = 5 + 5p + (7 * -2 + -2p * -2)
-1 + 3p = 5 + 5p + (-14 + 4p)

Reorder the terms:
-1 + 3p = 5 + -14 + 5p + 4p

Combine like terms: 5 + -14 = -9
-1 + 3p = -9 + 5p + 4p

Combine like terms: 5p + 4p = 9p
-1 + 3p = -9 + 9p

Solving
-1 + 3p = -9 + 9p

Solving for variable 'p'.

Move all terms containing p to the left, all other terms to the right.

Add '-9p' to each side of the equation.
-1 + 3p + -9p = -9 + 9p + -9p

Combine like terms: 3p + -9p = -6p
-1 + -6p = -9 + 9p + -9p

Combine like terms: 9p + -9p = 0
-1 + -6p = -9 + 0
-1 + -6p = -9

Add '1' to each side of the equation.
-1 + 1 + -6p = -9 + 1

Combine like terms: -1 + 1 = 0
0 + -6p = -9 + 1
-6p = -9 + 1

Combine like terms: -9 + 1 = -8
-6p = -8

Divide each side by '-6'.
p = 1.333333333

Simplifying
p = 1.333333333

See similar equations:

| 3[2x+5]=9 | | 6-e^12x=5 | | 12c-c=x | | 4q^2-9pq-4q+9p= | | p(t-2)=4(4-2)-5 | | (26+22)+(38x-14)=180 | | y+2*-2=8 | | (3r-1)+7=8r-(3-2r) | | .40x+.05(10-x)=.10(-30) | | 38x=266 | | -3(c+5)=12 | | 20x^2-32x^2-25y+40=0 | | 0.235=44 | | 0.75x+25.00=250.00 | | 9-6x=3k+4 | | 0.75x+25.00=231.215 | | 0.75x+25.00=.25 | | 2r^3+5r^2=0 | | 2x+2.46=76x+1 | | x*5%*3=450 | | x*.05*3=450 | | x*.5*3=450 | | -8n+15=-7n-13 | | 8h-(2n+7)=23 | | 17x+3(8-5x)=3(13-x)+3x | | -2+12z+13q-4z-2q+15= | | P(x)=x^4-2x^3+4x^2-8x+16 | | 3=11+k/4 | | 5s+(4-5)=9-(s-6) | | (1/7)x=-10 | | -x+45=2x+21 | | 4m-6=5m+7-m |

Equations solver categories