3t(3t-4)=2(t+8)

Simple and best practice solution for 3t(3t-4)=2(t+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3t(3t-4)=2(t+8) equation:



3t(3t-4)=2(t+8)
We move all terms to the left:
3t(3t-4)-(2(t+8))=0
We multiply parentheses
9t^2-12t-(2(t+8))=0
We calculate terms in parentheses: -(2(t+8)), so:
2(t+8)
We multiply parentheses
2t+16
Back to the equation:
-(2t+16)
We get rid of parentheses
9t^2-12t-2t-16=0
We add all the numbers together, and all the variables
9t^2-14t-16=0
a = 9; b = -14; c = -16;
Δ = b2-4ac
Δ = -142-4·9·(-16)
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{193}}{2*9}=\frac{14-2\sqrt{193}}{18} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{193}}{2*9}=\frac{14+2\sqrt{193}}{18} $

See similar equations:

| 0.03x=200 | | 2x/5=+1=7 | | (5t-6/6)-(4+6/4)=(3/4)-t | | 9n=4+8 | | (5t-6/6)-(4+6/4)=3/4-t | | 5s+6=12 | | 7x-21=3x+83 | | 64=-16t^2+32t=48 | | 23-3(2x+8)=x-15 | | √(3x+1)+1=√x | | x/(x+1)-(x+1)/x=13/6 | | h=-16(2)(2)+64+48 | | 3a-10=-71 | | 13n-n-16n=20 | | 2=-16t^2+32t+48 | | -16t^2+32t+48=32 | | 20-3x=28 | | x^2-16x-64=196 | | 3x+7=−5x+5 | | x^2-16x=260 | | 36=(x+7)*(x+2) | | 4x+18=5.5x | | (×÷2)+x=50 | | .4=(x-33.18)/x | | (X÷2)+x=50 | | 1.3(a+2)=5.6=17.3 | | Y=−x+6 | | 30=2(9+w) | | 50x=10x+500 | | 36=(x+9)(x+2) | | 5.8-3.7m-8.6=6.1 | | 9,2m-4,7m-8.5=63.5 |

Equations solver categories