If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t-12t(3+t)-4t=-(5-t)-(7-t)
We move all terms to the left:
3t-12t(3+t)-4t-(-(5-t)-(7-t))=0
We add all the numbers together, and all the variables
3t-12t(t+3)-4t-(-(-1t+5)-(-1t+7))=0
We add all the numbers together, and all the variables
-1t-12t(t+3)-(-(-1t+5)-(-1t+7))=0
We multiply parentheses
-12t^2-1t-36t-(-(-1t+5)-(-1t+7))=0
We calculate terms in parentheses: -(-(-1t+5)-(-1t+7)), so:We add all the numbers together, and all the variables
-(-1t+5)-(-1t+7)
We get rid of parentheses
1t+1t-5-7
We add all the numbers together, and all the variables
2t-12
Back to the equation:
-(2t-12)
-12t^2-37t-(2t-12)=0
We get rid of parentheses
-12t^2-37t-2t+12=0
We add all the numbers together, and all the variables
-12t^2-39t+12=0
a = -12; b = -39; c = +12;
Δ = b2-4ac
Δ = -392-4·(-12)·12
Δ = 2097
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2097}=\sqrt{9*233}=\sqrt{9}*\sqrt{233}=3\sqrt{233}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-3\sqrt{233}}{2*-12}=\frac{39-3\sqrt{233}}{-24} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+3\sqrt{233}}{2*-12}=\frac{39+3\sqrt{233}}{-24} $
| 7-6(1+2b)=96 | | 6(n+8)=-4(1-8n) | | 2x+34=-2(1+8x) | | 10x/10=33+10x/10 | | 4/3m+2=-6 | | 1/2x+3/4x+5/8x=45 | | 12x+175=45 | | 7(6-2a)=-5(-3a+1) | | 6x-11=20x-51 | | -5(7-8x)=165 | | 9-4(3x-2)=-3x+17 | | 2(4s-16)+5s=-5 | | 3n+6=54 | | 2/3(6x-10)=-3x+17 | | c=480÷32 | | 2(4x+2)=4x-13(x-1) | | 1/7(4w-3)=15 | | c=489-32 | | X-6x=5x-2 | | -6(1-6r)=-3(-5r-5) | | 3/5h-7=14 | | 7x+45=-7x+-45 | | 6x-16=14x+2 | | 5/21f=-8 | | (X+3)/4+x/6=5 | | 7(3r-7)-(r+5)=-52 | | 144=8(7+v) | | 12x+16x-14x=14x+13x-152 | | 1-3x=2x=2+14 | | -8n+6(n+6)=3(n-3) | | 10x+8=3(x+9)=4x-4 | | 7x-6=-14 |