3t-2t(t-1)=5t-4(2+t)

Simple and best practice solution for 3t-2t(t-1)=5t-4(2+t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3t-2t(t-1)=5t-4(2+t) equation:



3t-2t(t-1)=5t-4(2+t)
We move all terms to the left:
3t-2t(t-1)-(5t-4(2+t))=0
We add all the numbers together, and all the variables
3t-2t(t-1)-(5t-4(t+2))=0
We multiply parentheses
-2t^2+3t+2t-(5t-4(t+2))=0
We calculate terms in parentheses: -(5t-4(t+2)), so:
5t-4(t+2)
We multiply parentheses
5t-4t-8
We add all the numbers together, and all the variables
t-8
Back to the equation:
-(t-8)
We add all the numbers together, and all the variables
-2t^2+5t-(t-8)=0
We get rid of parentheses
-2t^2+5t-t+8=0
We add all the numbers together, and all the variables
-2t^2+4t+8=0
a = -2; b = 4; c = +8;
Δ = b2-4ac
Δ = 42-4·(-2)·8
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{5}}{2*-2}=\frac{-4-4\sqrt{5}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{5}}{2*-2}=\frac{-4+4\sqrt{5}}{-4} $

See similar equations:

| 10.4+2.7r=11.70 | | (10r2-79r+63)=(r-7)= | | 2p−4=8 | | b-2/7=29/42 | | 5/3x-27=24 | | x/11-9=-7 | | –4p+9=1−3p | | 4i=-8 | | 2u/3=-4 | | 13/y=1/3 | | -2x+5+2x-4x=7 | | 3x+7x=24 | | 2x+3x-x=11 | | 2x+3x–x=16 | | 9a+8=23 | | 4x^2-60x=+224 | | 3x+1/4=8 | | 4x^2=60x+224 | | 5/x+4=30/54 | | 10x+9–6x=-19 | | 3/x+1=6/×+2 | | 6p=12(4p+8) | | 20=5x–13+6x | | x2–3x–4=10–x2 | | 3(4x-2=66 | | 5x+5-4x-5=180 | | -4=t-4/5 | | 15=1/3m | | 36/(1/2)=x | | r+7/3=10 | | x/(1/2)=36 | | 4+n/7=8 |

Equations solver categories