If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-2t-9=0
a = 3; b = -2; c = -9;
Δ = b2-4ac
Δ = -22-4·3·(-9)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{7}}{2*3}=\frac{2-4\sqrt{7}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{7}}{2*3}=\frac{2+4\sqrt{7}}{6} $
| -396=-6x+5(-6x-36) | | 4(a+4)−2=34 | | 5/6k=77/18 | | x+14+x+14=x+7 | | -(3x-5)=10 | | 0.4n+2=4.2 | | 2x(12-24)=17 | | X=9(x-6) | | (t+8)(−2)=12 | | x=54x−2=2x+8 | | Z=9(x-6) | | -120=1-6x | | m^2=5m-1 | | 9b+8=31 | | 4y^2=10y-5 | | 5/2c=8/12 | | 32-12=z | | 6x+57=180 | | 13(10x+42)=-1274 | | 47x=27 | | -5n-3=-2n+9 | | 27x/3=6 | | 3b-3-2b+4=0 | | -2(x-9)+3=5 | | 3x=-5=24 | | w–12=–14 | | a+7=9,a | | 2(3x-4)-4x=26 | | 5(m+3)-2M=M+9 | | 2k-49=9k | | -(3x-4)-2x=24 | | (8x+20+(11x-31)=180 |