If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u(2u-5)-7u(2u+7)=0
We multiply parentheses
6u^2-14u^2-15u-49u=0
We add all the numbers together, and all the variables
-8u^2-64u=0
a = -8; b = -64; c = 0;
Δ = b2-4ac
Δ = -642-4·(-8)·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-64}{2*-8}=\frac{0}{-16} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+64}{2*-8}=\frac{128}{-16} =-8 $
| 3x=6+27 | | x+0,25x=1500 | | 0,25x=400 | | 1=0.1^-x | | 50000/x=10 | | 10=50000/x | | 5x(7/2)=14-3/2x | | (x+2)(x−8)=0 | | -4=(8x-48)(x^2-2x+40) | | -4=(x-6)(8)(x^2-2x+40) | | a÷3=7 | | 2,4=4x2+6,4 | | (1/s)+(5/4s)=(1/5) | | 1/2x-1=21/2x-8 | | 3(7x−21)−42=63 | | (6-3i)+2=-4-3i | | x=2(-4x+90) | | s=2(2s-45) | | x=2(x-37) | | p+46=2(p) | | s+44=2(s) | | u+55=6u | | u+55=2(3u) | | w+69=2w | | u=2(u-29) | | p=2(p-10) | | w-8=2(w-45) | | s+2=2(s-17) | | s+2=s-17 | | y=y+45 | | y+45=y | | 5b=b+4 |